Standard Model Physics

Homer Wolfe

The Ohio State University On Behalf of the CDF & DØ

Collaborations

PHENO: 10 May 2011 Madison, Wisconsin

Tevatron SM Physics Goals

- Produce, Reconstruct SM Objects and Decay Products
 - Production Rates
 - Distributions, correlations
 - Asymmetries
 - UE/MPI
 - Masses,
 - Decay Widths
 - Branching Fractions
 - CP Violation
 - Couplings
 - Inputs to PDF fits
 - SM Higgs Searches

The Tevatron, Batavia IL, USA

Superconducting Storage Ring

- 1km Radius
- •Run II: Mar 2001-Sept 2011
- Provides pp Collisions at 1.96 TeV to CDF/DØ
 - 36x36 bunches
 - ~E10-E11 p/bunch
 - ~21μs per revolution
 - ~1.5 MJ beam energy
- Exemplary Performance
 - Peak inst.: >4.2E32 cm⁻²/s
 - ~70/pb delivered/week
 - **Sept:** ~12/**fb del./exp.**

Two General Purpose Detectors

- Silicon Tracking $|\eta|$ <3
- Scintillating Fiber Tracker 1.9 Tesla B Field, |η|<1.7
- LAr/DU Calor. $|\eta|$ <4
- Muon Chambers: $|\eta| < 2$
- JES 1-2%

- Silicon Tracking |η|<2-2.5
- Drift cell Tracker
 1.4 Tesla B Field, |η|<1.1
- Pb/Cu/Scint Calor. |η|<3.2
- Muon Chambers: $|\eta| < 1.5$
- JES Resolution 2-3%

The Datasets

- •85-90% Data taking efficiency/Exp Up to 8/fb results presented here
 - >9/fb on tape today
 - >10/fb by end of program
- Typical #vertices/event 1-3
- Candidates per experiment, fb⁻¹:
 - B0s→J/ $\psi \phi$: ~1K-2K
 - $-t\bar{t}$ →e/μ+>=1 b-tag: ~200
 - $Z\rightarrow ee/\mu\mu$: ~60K
 - (W→e/ μ)+dijet : ~10K
 - >30 GeV photons : ~2M
 - **ZZ**→41: ~1
 - $-t\bar{t}+\gamma$ → γ + l+MET+jets: ~5

Precision

- Fundamental parameters measured
- Fundamental principles tested

2009 Tevatron W mass precision exceeds LEP2

QCD Scale Evolution!

 $\chi^{2}(b_{T})$

 $\alpha_{\rm s}(M_{\rm Z})$

0.1

Discovery

QCD At the Tevatron

New Measurements Presented:

- Substructure in High-ET Jets
- 3-Jet Differential Cross Sections
- Azimuthal Decorrelations in γ+Jets

Other great results:

- D0: Measurements of differential cross sections and angular distributions of $Z/\gamma*+jets+X$ events
- D0: A Measurement of the Ratio of Inclusive Cross Sections σ(pp→Zbjet) / σ(pp/Z+jet)
- CDF: Prompt diphoton production
- CDF: Diffractive W/Z production
- CDF: Inclusive photon+heavy flavor
- CDF: Pt-Balance in Z+jets

Substructure of High-ET Jets

- Some searches at the LHC will involve jet substructure
- Study model agreement of substructure of jets with
 ET > 400 GeV in data
- Remove High-ET ttbar decay jets
- Derive corrections for UE/MI
 - From unclustered energy outside jets
 - Subtract these corrections from higher vertex multiplicity
- Examine structure variables for QCD jets under multiple finding algorithms
 - Mass
 - Planar Flow
 - Thrust

3-Jet Differential Cross Sections

- First measurement of differential 3-jet XS at Tevatron
- Corrected to parton-level with SHERPA
- Data show ability to constrain PDFs at high M3j
- Comparisons to many PDF sets
 NLO predictions with simultaneous fit to ας

Azimuthal Decorrelations and MPI in γ +2/3 jets

- Explore higher order QCD without explicit reconstruction of additional jets
- Create templates of single and multi-parton interactions to extract shapes from data.
- Can be used for tuning MC Generators

Top Physics at the Tevatron

New Measurements Presented:

- Top Mass Combination
- Color Flow in Top Decays
- Top Quark Charge Asymmetry

Other great results:

- Single-Top Production, Vtb
 - See talks by J.Joshi and Y.T.Tsai at 14:30,14:45 Today!
- Top Production Cross Sections
- W Helicity, spin correlations
- Direct Charge Measurement
- Top-antitop mass asymmetry
- Searches for New Physics With Top Decays (Next Talk)

Top Quark Pair Reconstruction

 Many top quark measurements at D0/CDF involve association of all individual top decay products

- likelihood based kinematic fit
- Matrix element probability
- Successes:
 - Direct measurement of t-charge
 - Soft leptons from b
 - Aggregate jet charge
 - Spin correlations in tt→llbb
 - Use tagging to reduce combinatorial background

Top Mass Measurements

- New D0 and CDF combinations!
- Draw power from dilepton, semileptonic, and all hadronic decays
- Systematics dominated

Color Flow in Top Decays

- Colorflow can be a tool to separate color-singlet-mediated processes from color octetmediated
 - H->bb vs QCD bb
- Measure "pull" of W,t decay jets.
- W->jets better described as color singlet than as toy "octet" model
 - %singlet contribution >0.277 @ 95% CL

Untagged pair jets (from W), for events passing the MW requirement, with $\Delta R < 2$, and $|\eta| < 1$ for both jets.

Top Quark Charge Asymmetry

- Measure signed difference of top and anti-top η
- AFB 0.088 +/- 0.013 predicted @NLO in SM
- 3-sigma higher AFB observed by CDF and D0
 - Agreement between
 CDF-D0 in
 lab frame measurement

Top Quark Charge Asymmetry

- Also Observed in CDF dilepton+jets
- CDF: High mass enhancement
- All studies statistics dominated
 - Analyses only ~6/fb

Electroweak Physics

Results Presented Here:

- Z→e+e- Charge Asymmetry
- Z→e+e- Angular Coefficients
- ZZ Cross sections (4-l and llvv)
- Wjj Invariant Mass Distribution

Other Great Results:

- W/Z Mass
- Precise study of the Z/gamma* boson transverse momentum distribution in ppbar collisions using a novel technique
- CDF/D0 Measurements of the WZ→lvll cross section
- Z+ γ
- Drell-Yan Differential Cross Sections

Z→e⁺e⁻ Charge Asymmetry

- ●D0: 5.0/fb (sub. PRD) arXiv:1104.4590
 - Use charge asymmetry in Collins-Soper Frame
 - measure $\sin^2 \theta^l_{eff}$ and g_v , g_a for u/d quarks.
 - Uncert. on sin²θ¹_{eff} < LEP all-hadronic
 - Dominant uncertainties: Stat, PDFs
 - Could approach world average uncert with CDF+D0 @10/fb.

Z-e⁺e⁻ Angular Coefficients

- Possible in general to write the angular distributions of Drell-Yan vents in & angular coefficients: A0-A6.
- Measure differential cross section in PT
- Extract 4 coefficients, compare to $\stackrel{\circ}{\triangleleft}$ 0.8 SM predictions
- Test Lam-Tung Relation (PRD 18 2447 (1978))
 - Analogous to Callin-Gross
 - A0=A2, implies gluon is spin 1, vector
 - Consistent with observations

Diboson Production Results

- WW/WZ in all leptonic modes (CDF 6.0/fb, D0 4.1)
- CDF $ZZ\rightarrow llvv 5.9/fb$
 - NN discriminant
 - ZZ XS: 1.45+.60-.51pb
 - Stat. uncert ~syst uncert.
 - NLO ~10%
- \bullet D0 ZZ \rightarrow 41 (6.4/fb)
 - 10 observed events
 - ZZ XS: 1.40+0.43-0.37±0.14
- \bullet CDF ZZ \rightarrow 41 (5.9/fb)
 - 4 Events
 - $-1.7 + 1.2 0.7 \pm 0.2$

W+jets Invariant Mass Distribution

- In 2010, 4.3/fb WW->lnujj measurement showed localized Data/MC disagreement
- Choice was made to increase jet ET cut from 20→30GeV to diminish systematics. All other aspects of selection/systematics a priori.
- Chose to model excess as Gaussian contribution
 - Over all considered systematics/trial factor,
 Minimum significance: 3.1σ

W+jets Invariant Mass Distribution

- Appearance is suggestive of resonance decaying to jets
 - New physics or unaccounted systematic?
 - Altering selection alters significance, not excess Mjj mean
- Definitely not the SM Higgs
 - "Cross section" >30x too large, does not favor b-jets
- Shape-Altering systematics
 - Alternate Exponential BG Model
 - Alternate Z+jets data driven BG model
 - PDF, Scale, JES, NLO/LO via MCFM
 - No MC reweighing performed
- Lots of ongoing work
 - Awaiting D0 response
 - Alternate generators and matching schemes, reweighing, diagrammatic content
- Lots of supplemental plots and tables:
 - http://www-cdf.fnal.gov/physics/ewk/2011/wjj/

Flavor Physics

• Results Presented Here:

- Bs CP violating phase, Mixing Parameters
- Anomalous like sign dimuon charge asymmetry
- Branching Fraction of B0s→J/psi f0(980)

Other Great Results:

- Observation of Y(4140) in the J/ ψ ϕ Mass Spectrum in B+ \to J/ ψ ϕ K+
- Measurement of the production fraction times branching fraction f(b→Lambda_b)*BR(Lambda_b→J/psi Lambda)
- B+ Lifetime in B+ \rightarrow D0 π +
- Search for the Rare Decay D0→μ+μ-
- Improved measurement of time-integrated CP violation in D0→h+hdecays
- Measurement of the time-integrated mixing probability of B mesons

Mixing Parameters in Bs

- CDF Update With 5.2/fb, exclusive Bs/Bs state id via flavor tagging.
 - Simultaneous fit in Bs mass, angular shapes (CP eigenstate separation), Time dependent decay.
 - Constrain of the S-wave component background in fit.
 - Uses same-side kaon tagger

Mixing Parameters in Bs

- Both CDF and D0 results compatible
 - Roughly 1-sigma SM tension in both measurements

Evidence for Anomalous Like-Sign Dimuon Charge Asymmetry

- B/D Meson mass eigenstates are not flavor eigenstates
 - Oscillations->Second order weak interactions
 - Can be used to constrain CKM matrix
- Bd oscillations already measured by D0/CDF
 D0: Phys. Rev. D 74, 112002 (2006), hep-ex/0609034
- D mixing:
 - CDF: Phys. Rev. Lett. 100, 121802 (2008)
- B0s oscillation frequency/Phase:
 - CDF: Phys. Rev. Lett. 97, 242003 (2006).
 - D0 Phys. Rev. D 76, 057101 (2007), hep-ex/0702030
- D0: Explore B⁰ mixing via asymmetries:

$$- a_{sl} = [\Gamma(\overline{B} \rightarrow \mu^{\scriptscriptstyle +} X) - \Gamma(B \rightarrow \mu^{\scriptscriptstyle -} X)] / [\Gamma(\overline{B} \rightarrow \mu^{\scriptscriptstyle +} X) + \Gamma(B \rightarrow \mu^{\scriptscriptstyle -} X)]$$

$$a_{sl} = A_{sl} = [N^{++} - N^{--}]/[N^{++} + N^{--}]$$

- 6.1/fb of data: look for one or two B_0 decays to μ+X
 - 1.5E9 Single muon events
 - 3.7E6 like-sign muon decays

Evidence for Anomalous Like-Sign Dimuon Charge Asymmetry

- No SM deviation in
 - $\Delta\Gamma$, Δ m of d or s
- 3.2-sigma deviation from SM charge asymmetry
 - Prefers dimuon to di-antimuon
 - First evidence of anomalous CPV in neutral B mesons
- Periodic reversal of tracker field reduces systematics (D0 only)
- Many separate background asymmetries individually measured

Relative Branching to f0(980)

- D0: Measurement of the relative branching fraction of B0s \rightarrow J/ ψ f0(980), f0(980) \rightarrow $\pi\pi$ to B0s \rightarrow J/ ψ ϕ , ϕ \rightarrow KK
 - Decays of B0s→J/ψ f0(980) are CP eigenstates
 - Provide more direct measurement of ϕ_s than $J/\psi~\phi$
 - Provide complimentary systematics to $J/\psi \ \phi$
 - Fitting uncertainty on $M_{\pi\pi}$ largest systematic on R
 - R=.210+/-.032+/-.036

SM Higgs Searches

- ~1000 Higgs Events expected to be produced in 10/fb!
- Associated production (H→bb) and direct (H→WW) modes largest, but searches in many modes contribute
 - CDF+D0 combination

Light Higgs Searches

• Sensitivity at 115 (xSM):

Channel	CDF	D0
WH → lvbb	3.5	4.8
ZH → vvbb	4.0	4.0 Updated
$ZH \rightarrow llbb$	5.5	5.7
$\begin{array}{c} \mathbf{H} \rightarrow \mathbf{W}\mathbf{W} \\ \rightarrow \mathbf{l}\mathbf{v}\mathbf{l}\mathbf{v} \end{array}$	10.8 Updated	8.6 Updated
ZH+WH → jjbb	18	19.9
H o au au	15 Updated	12.8 Updated
Η→γγ	13 Updated	11 Updated

Light Higgs Searches

 Expected sensitivity now better than 2xSM for SM Higgs masses below 190 GeV!

Tevatron Run II Preliminary, $\langle L \rangle = 5.9 \text{ fb}^{-1}$

Heavy Higgs Searches

- Now SM Sensitivity at 165 for both experiments!
 - Large datasets (>7/fb)
 - Many low-signal/bg regions, high acceptance
 - Primary background: SM WW

High Mass Higgs Combined Search

Conclusions

- Tevatron has vibrant SM physics program
 - New ways to access QCD (precision QCD!)
 - Exciting hints of large CPV in b-sector
 - Better understanding of the top quarks
 - Large Top AFB signature seen in
 - Both Semileptonic (CDF & D0) and Dileptonic (CDF)
 - New EWK measurements possible with larger datasets
 - W+Mjj Excess: New physics? New systematics?
 - SM Higgs: ~SM Sensitivity at High Mass
 - Low mass <2xSM and gaining

Conclusions

For additional results see

- http://tevnphwg.fnal.gov/results/SM_Higgs_Winter_11/
- http://www-cdf.fnal.gov/physics/new/hdg/Results.html
- http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.html

Conclusions

- Tevatron has vibrant SM physics program
 - New ways to access QCD (precision QCD!)
 - Exciting hints of large CPV in b-sector
 - Better understanding of the top quarks
 - Large Top AFB signature seen in
 - Both Semileptonic (CDF & D0) and Dileptonic (CDF)
 - New EWK measurements possible with larger datasets
 - W+Mjj Excess: New physics? New systematics?
 - SM Higgs: SM Sensitivity at High Mass
 - Low mass <2xSM and gaining

Thank you for your attention

Questions?

CDF JES

PDFs

NNPDF2.1 dataset

ArXiv:1101.1300

